Taste graphs will transform fashion – Fashion Taste API

taste graph fashion
How do people describe their clothes and outfits? What clothes do they have in their closets?

There is plenty of data in the manufacturing and distribution of clothes. But once clothes are sold and people are wearing them, there is nothing. No data. Nada.

In the following lines, I will share the following:

  • Taste graphs will transform fashion;
  • They will focus on understanding post-purchase clothing behaviour;
  • They will allow tech companies to understand taste, as Spotify does with music;
  • They will end up owning people’s attention, because they will be useful.

Analyzing demand for outfits

The learnings below are based on 4 years analyzing the demand of outfit ideas, and then building the omnichannel personalization fashion retail engine Fashion Taste API, to help fashion retailers understand the taste of each individual shopper.

We learnt that two important questions were: How do people describe their clothes, outfits and what-to-wear needs? What clothes do they have in their closets and how do they wear them? In order to respond to these questions, we built a fashion ontology and a taste graph, and all the infrastructure to automate outfit advice.

An outfit is a playlist of clothes. It is also a correlated list of descriptors: it can be comfy, or perfect for the weekend. An outfit contains correlations among clothes, and the deep meaning that a person assigns to her clothing preferences. Outfits provide a unique perspective into closets.

An outfit is a playlist of clothes

Taste graphs bring a unique opportunity to own the fashion space

The biggest opportunity in fashion technology today is to build a mechanism to understand post-purchase clothing behaviour. And then, build technology on top of that understanding: technology to help people feel better with their clothes.

Traditional tech efforts focus on efficiently selling more clothes to people, and ignore the post-purchase experience. Once the purchase is finished, companies are blind and can’t see what happens next.

Offering a post-purchase experience that helps people feel well with their clothes, will let the winner own people’s attention, and so many more things as a result.

Taste graphs will power a Spotify for fashion

A Spotify for fashion will understand your taste and needs, because it’ll be powered by a taste graph.

It will help you decide what to wear at any time. You’ll be able to easily store your clothes in a virtual closet, and it will put outfits together for you. It will help you plan your outfits depending on your context, and will suggest new clothes that match your wardrobe.

Helping people feel well with their clothes will be the key functionality of such a service. People want to feel well with their outfits. They want to feel confident, comfortable, happy, beautiful, unique, sexy, stylish, powerful. Instead of that, many people feel stressed or bored or tiny. More than about clothes, it’s about wellness.

1.- Capture units of taste data

Before we try to understand taste, we need to understand what type of data we need to focus on. Spotify focuses mostly on playcounts (each time you listen to a song), and a playcount clearly defines your current behaviour.

We have learnt that the units of capturable taste data are related to text and images. Words express a need (“i need ideas to go to the office”). Images of clothes represent the clothes people own, and need help with. There are other units of capturable taste data, but it comes down to text and images. Then, in our mobile app we’ve built different easy-to-use input interfaces to capture data and allow people to communicate with the system. You can also see our In-Bedroom Fashion Stylist and our Digital Closet technology.

2.- An Ontology to understand fashion data

But fashion has a problem: it lacks a common classification system. The expression of clothing behaviour is very fragmented: text and images have different meanings for each person, and each person expresses the same concept differently. Due to the lack of this classification (or taxonomy), people’s data is noisy and algorithms cannot work with it. To solve this problem, we’ve built a fashion ontology, which is the backbone of our taste graph.

Our ontology gives structure and meaning to the incoming data. It allows us to interpret data. It is a multilevel “list” of hundreds of thousands of unique ways to describe what-to-wear needs. Think of Netflix initial classification system or Google’s synonym matching.

A derivative of our main ontology is our ontology of meta-garments, abstractions of specific garments. These meta-garments are the result of another learning: only certain attributes of a garment are relevant when solving the problem at hand. This ontology is 100% user-driven, it’s been built from the bottom up, and it is the result of the need to help people with their outfit needs.

3.- Taste graphs to understand fashion taste

When we get dressed in the mornings, we establish correlations among clothes, and among our ways of describing our outfits and needs. Look at yourself today: you are wearing a playlist of correlated descriptors and clothes. You’ve built an offline taste graph.

Taste graphs capture those correlations among descriptors, outfits and people. Think of it as a brain that understands “what goes well with” any garment, or for any occasion, etc. It has this understanding because it analyzes hundreds of millions of correlations, outfits and queries. Then, it filters them to your specific characteristics and context.

Our taste graph allows us to respond with output to any input. We call it the Social Fashion Graph and we patented it back in 2012. You might think that the image below is super simple, but that’s how simple we want the system to be: receive input > produce output.

Taste graphs simplify complexity

The end game

Taste graphs will provide structured and correlated taste data. And then will allow teams to build personalized and meaningful services for each person. Our closets will be taste graphs connected to ecommerces catalogues (also graphs), and everything will change. Taste graphs will transform fashion. Head over to the Fashion Taste API to learn more.


Thanks for reading! ?

Helping women plan their outfits, by using a vertical machine learning approach

About a year ago, we shared our approach and our vision on how we’ve applied machine learning to helping women plan their outfits and use a virtual closet. We didn’t have a blog back then, so we shared our thoughts on Medium. Now, we want to link to it from here.

In that post, we focused on the following aspects:

What is Omnichannel Personalization?

Please visit the Medium post How we grew from 0 to 4 million women on our fashion app, with a vertical machine learning approach or read the Hacker News discussion. You can also read about our taste graph here.

Further reading:

3 f’s fabulous fashion and fun app!

This app has the three f! 3 f’s fabulous fashion and fun app!

This is a great app to have especially if you’re new to the fashion world and need great ideas or if you’re a dedicated member of the fashion world you can share the lovel

Thanks so much for the reviews

Thanks so much for the reviews! For everyone coming to Chicisimo because Stylebook is not available for Android, hello and welcome!! A quick summary: Chicisimo will help you organize your clothes digitally in a virtual closet. Then, the app will pick outfits for you with your own clothes. You will find Polyvore style combinations. Also you will see how other women like you, wear the clothes you have in your closet. Chicisimo is intended to be a useful wardrobe app, and it will also be a fun fashion app.

Chicisimo has been featured as App of the Day by Apple, and the Best App of the Year in 2019. This is pretty cool and we love it. Never thought that an outfit planning app would be so highly considered by Apple.

You can do search all types of ideas at Chicisimo

You can do search all types of ideas at Chicisimo. You can see real fashion on real women wear, for example, see what looks good with black pants and decide to wear them with a pink jacket or a pair of white sneakers. How you decide how to wear your black pants is up to you, but if you ever need help, Chicisimo is hear to help you with your outfits.

The first idea to wear black pants in the post above: My outfit with my black bags of victoria secret, white sneakers of the brand Converse, black leggings of the brand pull&bear, and white sweaters of the brand love.

You can read more reviews of Chicisimo here, or send us your own, and download the app yourself: Chicisimo outfit planner for iOS and for Android.